Go to repository
This repository contains the BNN models and the source codes of the accelerator developed and described in the paper “Bayesian Neural Networks to Analyze Hyperspectral Datasets Using Uncertainty Metrics”, available on: DOI: 10.1109/TGRS.2022.3205119
A postprint of this work can be found in: https://zaguan.unizar.es/record/121191?ln=es
Machine learning techniques, and specifically neural networks, have proved to be very useful tools for image classification tasks. Nevertheless, measuring the reliability of these networks and calibrating them accurately are very complex. This is even more complex in a field like hyperspectral imaging, where labeled data are scarce and difficult to generate. Bayesian neural networks (BNNs) allow to obtain uncertainty metrics related to the data processed (aleatoric), and to the uncertainty generated by the model selected (epistemic). On this work, we will demonstrate the utility of BNNs by analyzing the uncertainty metrics obtained by a BNN over five of the most used hyperspectral images datasets. In addition, we will illustrate how these metrics can be used for several practical applications such as identifying predictions that do not reach the required level of accuracy, detecting mislabeling in the dataset, or identifying when the predictions are affected by the increase of the level of noise in the input data.
BibTex citation
@ARTICLE{9881579, author={Alcolea, Adrián and Resano, Javier}, journal={IEEE Transactions on Geoscience and Remote Sensing}, title={Bayesian Neural Networks to Analyze Hyperspectral Datasets Using Uncertainty Metrics}, year={2022}, volume={60}, number={}, pages={1-10}, doi={10.1109/TGRS.2022.3205119}}